On the Minimization Problem of Sub-linear Convex Functionals
نویسندگان
چکیده
The study of the convergence to equilibrium of solutions to FokkerPlanck type equations with linear diffusion and super-linear drift leads in a natural way to a minimization problem for an energy functional (entropy) which relies on a sub-linear convex function. In many cases, conditions linked both to the non-linearity of the drift and to the space dimension allow the equilibrium to have a singular part. We present here a simple proof of existence and uniqueness of the minimizer in the two physically interesting cases in which there is the constraint of mass, and the constraints of both mass and energy. The proof includes the localization in space of the (eventual) singular part. The major example is related to the Fokker-Planck equation introduced in [6, 7] to describe the evolution of both Bose-Einstein and Fermi-Dirac particles.
منابع مشابه
Image Labeling and Grouping by Minimizing Linear Functionals over Cones
We consider energy minimization problems related to image labeling, partitioning, and grouping, which typically show up at mid-level stages of computer vision systems. A common feature of these problems is their intrinsic combinatorial complexity from an optimization pointof-view. Rather than trying to compute the global minimum a goal we consider as elusive in these cases we wish to design opt...
متن کاملA class of certain properties of approximately n-multiplicative maps between locally multiplicatively convex algebras
We extend the notion of approximately multiplicative to approximately n-multiplicative maps between locally multiplicatively convex algebras and study some properties of these maps. We prove that every approximately n-multiplicative linear functional on a functionally continuous locally multiplicatively convex algebra is continuous. We also study the relationship between approximately mu...
متن کاملOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
متن کاملMinimization of energy functionals applied to some inverse problems
We consider a general class of problems of minimization of convex integral functionals subject to linear constraints. Using Fenchel duality, we prove the equality of the values of the minimization problem and its associated dual problem. This equality is a variational criterion for the existence of solution to a large class of inverse problems entering the class of generalized Fredholm integral...
متن کاملMinimization of Nonsmooth Convex Functionals in Banach Spaces
We develop a uniied framework for convergence analysis of subgradient and subgradient projection methods for minimization of nonsmooth convex functionals in Banach spaces. The important novel features of our analysis are that we neither assume that the functional is uniformly or strongly convex, nor use regularization techniques. Moreover, no boundedness assumptions are made on the level sets o...
متن کامل